SELAMAT DATANG

Sabtu, 25 April 2015

Teori Kinetik Gas

( Sumber: Fisikastudycenter.com )


Fisikastudycenter.com- Contoh Soal dan Pembahasan tentang Teori Kinetik Gas, Materi Fisika 11 Kelas 2 SMA mencakup penggunaan persamaan gas ideal, variasi perubahan volume, suhu dan tekanan pada sistem gas ideal.




Soal No. 1
16 gram gas Oksigen (M = 32 gr/mol) berada pada tekanan 1 atm dan suhu 27oC. Tentukan volume gas jika:
a) diberikan nilai R = 8,314 J/mol.K
b) diberikan nilai R = 8314 J/kmol.K



Pembahasan
a) untuk nilai R = 8,314 J/mol.K
Data :
R = 8,314 J/mol.K
T = 27oC = 300 K
n = 16 gr : 32 gr/mol = 0,5 mol
P = 1 atm = 105 N/m2




b) untuk nilai R = 8314 J/kmol.K

Data :
R = 8314 J/kmol.K
T = 27oC = 300 K
n = 16 gr : 32 gr/mol = 0,5 mol
P = 1 atm = 105 N/m2




Soal No. 2
Gas bermassa 4 kg bersuhu 27oC berada dalam tabung yang berlubang.



Jika tabung dipanasi hingga suhu 127oC, dan pemuaian tabung diabaikan tentukan:
a) massa gas yang tersisa di tabung
b) massa gas yang keluar dari tabung
c) perbandingan massa gas yang keluar dari tabung dengan massa awal gas
d) perbandingan massa gas yang tersisa dalam tabung dengan massa awal gas
e) perbandingan massa gas yang keluar dari tabung dengan massa gas yang tersisa dalam tabung

Pembahasan
Data :
Massa gas awal m1 = 4 kg
Massa gas tersisa m2
Massa gas yang keluar dari tabung Δ m = m2 − m1

a) massa gas yang tersisa di tabung



b) massa gas yang keluar dari tabung



c) perbandingan massa gas yang keluar dari tabung dengan massa awal gas



d) perbandingan massa gas yang tersisa dalam tabung dengan massa awal gas



e) perbandingan massa gas yang keluar dari tabung dengan massa gas yang tersisa dalam tabung

 

Soal No. 3
A dan B dihubungkan dengan suatu pipa sempit. Suhu gas di A adalah 127oC dan jumlah partikel gas di A tiga kali jumlah partikel di B.



Jika volume B seperempat volume A, tentukan suhu gas di B!

Pembahasan
Data :
TA = 127oC = 400 K
NA : NB = 2 : 1
VA : VB = 4 : 1

 

Soal No. 4
Gas dalam ruang tertutup memiliki suhu sebesar T Kelvin energi kinetik rata-rata Ek = 1200 joule dan laju efektif V = 20 m/s.



Jika suhu gas dinaikkan hingga menjadi 2T tentukan:
a) perbandingan energi kinetik rata-rata gas kondisi akhir terhadap kondisi awalnya
b) energi kinetik rata-rata akhir
c) perbandingan laju efektif gas kondisi akhir terhadap kondisi awalnya
d) laju efektif akhir

Pembahasan
a) perbandingan energi kinetik rata-rata gas kondisi akhir terhadap kondisi awalnya



b) energi kinetik rata-rata akhir



c) perbandingan laju efektif gas kondisi akhir terhadap kondisi awalnya



d) laju efektif akhir



Soal No. 5
Sebuah ruang tertutup berisi gas ideal dengan suhu T dan kecepatan partikel gas di dalamnya v. Jika suhu gas itu dinaikkan menjadi 2T maka kecepatan partikel gas tersebut menjadi …
A. √2 v
B. 12 v
C. 2 v
D. 4 v
E. v2

(Dari soal Ebtanas 1990)

Pembahasan
Data dari soal adalah:
T1 = T
T2 = 2T
V1 = ν
v2 =.....

Kecepatan gas untuk dua suhu yang berbeda



Sehingga diperoleh



Soal No. 6
Didalam sebuah ruangan tertutup terdapat gas dengan suhu 27oC. Apabila gas dipanaskan sampai energi kinetiknya menjadi 5 kali energi semula, maka gas itu harus dipanaskan sampai suhu …
A. 100oC
B. 135oC
C. 1.200oC
D. 1.227oC
E. 1.500oC
(Soal Ebtanas 1992)

Pembahasan
Data diambil dari soal
T1 = 27°C = 27 + 273 = 300 K
Ek2 = 5 Ek1
T2 = .....

Energi kinetik gas untuk dua suhu yang berbeda





Sehingga diperoleh



Dalam Celcius adalah = 1500 − 273 = 1227°C

Soal No. 7
Di dalam ruang tertutup suhu suatu gas 27°C, tekanan 1 atm dan volume 0,5 liter. Jika suhu gas dinaikkan menjadi 327°C dan tekanan menjadi 2 atm, maka volume gas menjadi....
A. 1 liter
B. 0,5 liter
C. 0,25 liter
D. 0,125 liter
E. 0,0625 liter

Pembahasan
Data soal:
T1 = 27°C = 300 K
P1 = 1 atm
V1 = 0,5 liter

T2 = 327°C = 600 K
P2 = 2 atm
V2 = ..........

P1 V1               P2 V2
_______ = _______
T1                 T2

(1)(0,5)       (2) V2
_______ = _______
300                600

V2 = 0,5 liter

Soal No. 8
Suatu gas ideal mula-mula menempati ruang yang volumenya V dan tekanan P. Jika suhu gas menjadi 5/4 T dan volumenya menjadi 3/4 V, maka tekanannya menjadi….
A. 3/4 P
B. 4/3 P
C. 3/2 P
D. 5/3 P
E. 2 P
(UN 2010 PO4)

Pembahasan




Soal No. 9
Gas dengan volume V berada di dalam ruang tertutup bertekanan P dan bersuhu T. Bila gas mengembang secara isobarik sehingga volumenya menjadi 1/2 kali volume mula-mula, maka perbandingan suhu gas mula-mula dan akhir adalah....(UN Fisika 2014)
A. 1 : 1
B. 1 : 2
C. 1 : 3
D. 2 : 1
E. 3 : 2

Pembahasan
Data soal:
P1 = P → 1
T1 = T → 1
Isobaris artinya tekanannya sama P1 = P2 → 1

Volumenya menjadi 1/2 kali volume mula-mula artinya:
V2 = 1
V1 = 2
T1 : T2 =....



Soal No. 10
Suatu gas ideal mula-mula menempati ruangan yang volumenya V dan suhu T dan tekanan P.
   Tabung I        Tabung II


Jika gas dipanaskan kondisinya seperti pada tabung 2, maka volume gas menjadi....(UN Fisika 2014)
A. 1/2 V
B. 8/9 V
C. 9/8 V
D. 2/3 V
E. 3/2 V

Pembahasan
Data soal:
Tekanan menjadi 4/3 mula-mula:
P1 = 3
P2 = 4

Suhu menjadi 3/2 mula-mula:
T1 = 2
T2 = 3
V2 = ..... V1

FLUIDA DINAMIS

( Sumber : http://fisikastudycenter.com )

Contoh Soal dan Pembahasan tentang Fluida Dinamis, Materi Fisika kelas 2 SMA. Mencakup debit, persamaan kontinuitas, Hukum Bernoulli dan Toricelli dan gaya angkat pada sayap pesawat.


Rumus Minimal

Debit
Q = V/t
Q = Av
Keterangan :
Q = debit (m3/s)
V = volume (m3)
t = waktu (s)
A = luas penampang (m2)
v = kecepatan aliran (m/s)
1 liter = 1 dm3 = 10−3 m3

Persamaan Kontinuitas
Q1 = Q2
A1v1 = A2v2

Persamaan Bernoulli
P + 1/2 ρv2 + ρgh = Konstant
P1 + 1/2 ρv12 + ρgh1 = P2 + 1/2 ρv22 + ρgh2

Keterangan :
P = tekanan (Pascal = Pa = N/m2)
ρ = massa jenis fluida; cairan ataupun gas (kg/m3)
g = percepatan gravitasi (m/s2)

Tangki Bocor Mendatar
v = √(2gh)
X = 2√(hH)
t = √(2H/g)

Keterangan :
v = kecepatan keluar cairan dari lubang
X = jarak mendatar jatuhnya cairan
h = jarak permukaan cairan ke lubang bocor
H = jarak tempat jatuh cairan (tanah) ke lubang bocor
t = waktu yang diperlukan cairan menyentuh tanah

Soal No. 1
Ahmad mengisi ember yang memiliki kapasitas 20 liter dengan air dari sebuah kran seperti gambar berikut!



Jika luas penampang kran dengan diameter D2 adalah 2 cm2 dan kecepatan aliran air di kran adalah 10 m/s tentukan:
a) Debit air
b) Waktu yang diperlukan untuk mengisi ember

Pembahasan
Data :
A2 = 2 cm2 = 2 x 10−4 m2
v2 = 10 m/s

a) Debit air
Q = A2v2 = (2 x 10−4)(10)
Q = 2 x 10−3 m3/s

b) Waktu yang diperlukan untuk mengisi ember
Data :
V = 20 liter = 20 x 10−3 m3
Q = 2 x 10−3 m3/s
t = V / Q
t = ( 20 x 10−3 m3)/(2 x 10−3 m3/s )
t = 10 sekon

Soal No. 2
Pipa saluran air bawah tanah memiliki bentuk seperti gambar berikut!



Jika luas penampang pipa besar adalah 5 m2 , luas penampang pipa kecil adalah 2 m2 dan kecepatan aliran air pada pipa besar adalah 15 m/s, tentukan kecepatan air saat mengalir pada pipa kecil!

Pembahasan
Persamaan kontinuitas
A1v1 = A2v2
(5)(15) = (2) v2
v2 = 37,5 m/s

Soal No. 3
Tangki air dengan lubang kebocoran diperlihatkan gambar berikut!



Jarak lubang ke tanah adalah 10 m dan jarak lubang ke permukaan air adalah 3,2 m. Tentukan:
a) Kecepatan keluarnya air
b) Jarak mendatar terjauh yang dicapai air
c) Waktu yang diperlukan bocoran air untuk menyentuh tanah

Pembahasan
a) Kecepatan keluarnya air
v = √(2gh)
v = √(2 x 10 x 3,2) = 8 m/s

b) Jarak mendatar terjauh yang dicapai air
X = 2√(hH)
X = 2√(3,2 x 10) = 8√2 m

c) Waktu yang diperlukan bocoran air untuk menyentuh tanah
t = √(2H/g)
t = √(2(10)/(10)) = √2 sekon

Soal No. 4
Untuk mengukur kecepatan aliran air pada sebuah pipa horizontal digunakan alat seperti diperlihatkan gambar berikut ini!



Jika luas penampang pipa besar adalah 5 cm2 dan luas penampang pipa kecil adalah 3 cm2 serta perbedaan ketinggian air pada dua pipa vertikal adalah 20 cm tentukan :
a) kecepatan air saat mengalir pada pipa besar
b) kecepatan air saat mengalir pada pipa kecil

Pembahasan
Rumus kecepatan fluida memasuki pipa venturimetar pada soal di atas
v1 = A2√ [(2gh) : (A12 − A22) ]
a) kecepatan air saat mengalir pada pipa besar
v1 = A2√ [(2gh) : (A12 − A22) ]
v1 = (3) √ [ (2 x 10 x 0,2) : (52 − 32) ]
v1 = 3 √ [ (4) : (16) ]
v1 = 1,5 m/s

Tips :
Satuan A biarkan dalam cm2 , g dan h harus dalam m/s2 dan m. v akan memiliki satuan m/s.

Bisa juga dengan format rumus berikut:


dimana
a = luas penampang pipa kecil
A = luas penampang pipa besar

b) kecepatan air saat mengalir pada pipa kecil
A1v1 = A2v2
(3 / 2)(5) = (v2)(3)
v2 = 2,5 m/s

Soal No. 5
Pada gambar di bawah air mengalir melewati pipa venturimeter.



Jika luas penampang A1 dan A2 masing-masing 5 cm2 dan 4 cm2 maka kecepatan air memasuki pipa venturimeter adalah....
A. 3 m/s
B. 4 m/s
C. 5 m/s
D. 9 m/s
E. 25 m/s

Pembahasan
Seperti soal sebelumnya, silakan dicoba, jawabannya 4 m/s.

Soal No. 6
Pipa untuk menyalurkan air menempel pada sebuah dinding rumah seperti terlihat pada gambar berikut! Perbandingan luas penampang pipa besar dan pipa kecil adalah 4 : 1.



Posisi pipa besar adalah 5 m diatas tanah dan pipa kecil 1 m diatas tanah. Kecepatan aliran air pada pipa besar adalah 36 km/jam dengan tekanan 9,1 x 105 Pa. Tentukan :
a) Kecepatan air pada pipa kecil
b) Selisih tekanan pada kedua pipa
c) Tekanan pada pipa kecil
air = 1000 kg/m3)

Pembahasan
Data :
h1 = 5 m
h2 = 1 m
v1 = 36 km/jam = 10 m/s
P1 = 9,1 x 105 Pa
A1 : A2 = 4 : 1

a) Kecepatan air pada pipa kecil
Persamaan Kontinuitas :
A1v1 = A2v2
(4)(10) = (1) (v2)
v2 = 40 m/s

b) Selisih tekanan pada kedua pipa
Dari Persamaan Bernoulli :
P1 + 1/2 ρv12 + ρgh1 = P2 + 1/2 ρv22 + ρgh2
P1 − P2 = 1/2 ρ(v22 − v12) + ρg(h2 − h1)
P1 − P2 = 1/2(1000)(402 − 102) + (1000)(10)(1 − 5)
P1 − P2 = (500)(1500) − 40000 = 750000 − 40000
P1 − P2 = 710000 Pa = 7,1 x 105 Pa

c) Tekanan pada pipa kecil
P1 − P2 = 7,1 x 105
9,1 x 105 − P2 = 7,1 x 105
P2 = 2,0 x 105 Pa

Soal No. 7
Sebuah pipa dengan diameter 12 cm ujungnya menyempit dengan diameter 8 cm. Jika kecepatan aliran di bagian pipa berdiameter besar adalah 10 cm/s, maka kecepatan aliran di ujung yang kecil adalah....
A. 22,5 cm/s
B. 4,4 cm/s
C. 2,25 cm/s
D. 0,44 cm/s
E. 0,225 cm/s
(Soal UAN Fisika 2004) 

Pembahasan
Rumus menentukan kecepatan diketahui diameter pipa
Dari persamaan kontinuitas


Pipanya memiliki diameter, jadi asumsinya luas penampangnya berupa lingkaran.


Luasnya diganti luas lingkaran menjadi


Baris yang terkahir bisa ditulis jadi


Jika diketahui jari-jari pipa (r), dengan jalan yang sama D tinggal diganti dengan r menjadi:
Kembali ke soal, masukkan datanya:
Data soal:
D1 = 12 cm
D2 = 8 cm
v1 = 10 cm/s
v2 = ........




Soal No. 8
Perhatikan gambar!



Jika diameter penampang besar dua kali diameter penampang kecil, kecepatan aliran fluida pada pipa kecil adalah....
A. 1 m.s−1
B. 4 m.s−1
C. 8 m.s−1
D. 16 m.s−1
E. 20 m.s−1
(UN Fisika SMA 2012 A86)

Pembahasan
Persamaan kontinuitas
Data soal:
V1 = 4
D1 = 2
D2 = 1
V2 =...?

Soal No. 9
Sebuah pesawat dilengkapi dengan dua buah sayap masing-masing seluas 40 m2. Jika kelajuan aliran udara di atas sayap adalah 250 m/s dan kelajuan udara di bawah sayap adalah 200 m/s tentukan gaya angkat pada pesawat tersebut, anggap kerapatan udara adalah 1,2 kg/m3!

Pembahasan
Gaya angkat pada sayap pesawat:



dimana:
A = luas total penampang sayap
ρ = massa jenis udara
νa = kelajuan aliran udara di atas sayap
νb = kelajuan aliran udara di bawah sayap
F = gaya angkat pada kedua sayap

Data soal:
Luas total kedua sayap
A = 2 x 40 = 80 m2
Kecepatan udara di atas dan di bawah sayap:
νa = 250 m/s
νb = 200 m/s
Massa jenis udara
ρ = 1,2 kg/m3
F =.....



Soal No. 10
Gaya angkat yang terjadi pada sebuah pesawat diketahui sebesar 1100 kN.


Pesawat tersebut memiliki luas penampang sayap sebesar 80 m2. Jika kecepatan aliran udara di bawah sayap adalah 250 m/s dan massa jenis udara luar adalah 1,0 kg/m3 tentukan kecepatan aliran udara di bagian atas sayap pesawat!

Pembahasan
Data soal:
A = 80 m2
νb = 250 m/s
ρ = 1,0 kg/m3
F = 1100 kN = 1100 000 N
νa =......



Kecepatan aliran udara di atas sayap pesawat adalah 300 m/s
Soal No. 11
Sayap pesawat terbang dirancang agar memiliki gaya ke atas maksimal, seperti gambar.



Jika v adalah kecepatan aliran udara dan P adalah tekanan udara, maka sesuai azas Bernoulli rancangan tersebut dibuat agar....(UN Fisika 2012)
A. vA > vB sehingga PA > PB
B. vA > vB sehingga PA < PB
C. vA < vB sehingga PA < PB
D. vA < vB sehingga PA > PB
E. vA > vB sehingga PA = PB

Pembahasan
Desain sayap pesawat supaya gaya ke atas maksimal:
Tekanan Bawah > Tekanan Atas, PB > PA sama juga PA <PB
Kecepatan Bawah < Kecepatan Atas, vB < vA sama juga vA > vB
Jawab: B. vA > vB sehingga PA < PB
Catatan:
(Tekanan Besar pasangannya kecepatan Kecil, atau tekanan kecil pasangannya kecepatan besar)
Soal No. 12
Sebuah bak penampung air diperlihatkan pada gambar berikut. Pada sisi kanan bak dibuat saluran air pada ketinggian 10 m dari atas tanah dengan sudut kemiringan α°.



Jika kecepatan gravitasi bumi 10 m/s2 tentukan:
a) kecepatan keluarnya air
b) waktu yang diperlukan untuk sampai ke tanah
c) nilai cos α
d) perkiraan jarak jatuh air pertama kali (d) saat saluran dibuka
(Gunakan sin α = 5/8 dan √39 = 6,24)

Pembahasan
a) kecepatan keluarnya air
Kecepatan keluarnya air dari saluran:



b) waktu yang diperlukan untuk sampai ke tanah
Meminjam rumus ketinggian dari gerak parabola, dari situ bisa diperoleh waktu yang diperlukan air saat menyentuh tanah, ketinggian jatuhnya air diukur dari lubang adalah − 10 m.



c) nilai cos α
Nilai sinus α telah diketahui, menentukan nilai cosinus α



d) perkiraan jarak jatuh air pertama kali (d) saat saluran dibuka
Jarak mendatar jatuhnya air

Soal No. 13
Untuk mengukur kelajuan aliran minyak yang memiliki massa jenis 800 kg/m3 digunakan venturimeter yang dihubungkan dengan manometer ditunjukkan gambar berikut.



Luas penampang pipa besar adalah 5 cm2 sedangkan luas penampang pipa yang lebih kecil 3 cm2. Jika beda ketinggian Hg pada manometer adalah 20 cm, tentukan kelajuan minyak saat memasuki pipa, gunakan g = 10 m/s2 dan massa jenis Hg adalah 13600 kg/m3.

Pembahasan
Rumus untuk venturimeter dengan manometer, di soal cairan pengisi manometer adalah air raksa / Hg:



dengan
v1 = kecepatan aliran fluida pada pipa besar
A = luas pipa yang besar
a = luas pipa yang kecil
h = beda tinggi Hg atau cairan lain pengisi manometer
ρ' = massa jenis Hg atau cairan lain pengisi manometer
ρ = massa jenis fluida yang hendak diukur kelajuannya

Data:
A = 5 cm2
a = 3 cm2
h = 20 cm = 0,2 m
g = 10 m/s2

diperoleh hasil:

Soal No. 14
Sebuah tabung pitot digunakan untuk mengukur kelajuan aliran udara. Pipa U dihubungkan pada lengan tabung dan diisi dengan cairan yang memiliki massa jenis 800 kg/m3.



Jika massa jenis udara yang diukur adalah 1 kg/m3 dan perbedaan level cairan pada tabung U adalah h = 25 cm, tentukan kelajuan aliran udara yang terukur!
Pembahasan
Misalkan kelajuan udara di A adalah vA dan kelajuan udara di B adalah vB.



Udara masuk melalui lubang depan dan saat di B aliran udara tertahan hingga kecepatannya nol.
Dari hukum Bernoulli:


Dengan kondisi:
Kecepatan di B vB = 0, dan perbedaan tinggi antara A dan B dianggap tidak signifikan, diambil ha = hb sehingga ρgha - ρghb = 0


dengan ρ adalah massa jenis udara yang diukur, selanjutnya dinamakan ρu.


Dari pipa U, perbedaan tinggi yang terjadi pada cairan di pipa U diakibatkan perbedaan tekanan.


gabungkan i dan ii


dengan va adalah kelajuan aliran udara yang diukur, selanjutnya dinamakan v,


Data soal:
ρu = 1 kg/m3
ρzc = 800 kg/m3
h = 25 cm = 0,25 m
g = percepatan gravitasi = 10 m/s2

diperoleh:

Postingan Lama